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This paper presents an overview of the foundations of quantum probability. The 
main concepts in this theory are measurements and generalized actions. These 
concepts correspond to the usual quantum observables and states. Probabilities 
are computed by means of a universal influence function. We first derive the 
form of the universal influence function and then construct the amplitude and 
probability of a measurement with respect to a given generalized action. It is 
shown that traditional quantum mechanics can be derived as a special case of 
this theory and moreover the theory gives a complete realistic interpretation of 
quantum mechanics. It is demonstrated that spins of any order can be described 
within this framework and a realistic solution to the EPR problem can be 
achieved. 

1. I N T R O D U C T I O N  

There  are var ious  app roaches  to q u a n t u m  p robab i l i t y  and  this 
overview will present  one o f  them ( G u d d e r ,  1988a,b, 1989, 1992b). Al-  
t hough  q u a n t u m  mechanics  has  been with  us for  mos t  o f  this century,  we 
still lack a deep unde r s t and ing  o f  it. There  remains  someth ing  mys te r ious  
and  puzzl ing a b o u t  q u a n t u m  mechanics .  M u c h  o f  this mys te ry  involves its 
Hi lbe r t  space fo rmula t ion .  The  t r ad i t iona l  Hi lbe r t  space f r a m e w o r k  o f  
q u a n t u m  mechanics  entai ls  var ious  puzzl ing quest ions,  some o f  which are 
included in the fol lowing list. 

1. Where  does the Hi lbe r t  space H come from? 
2. W h y  are states represented  by vectors  in H and  observables  by 

se l f -adjoint  ope ra to r s  on H ?  
3. W h y  does  the p robab i l i t y  have its pos tu la t ed  form? 
4. W h y  do the pos i t ion  and  m o m e n t u m  ope ra to r s  have their  par t icu-  

lar  form? 
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5. Where do the Bohr correspondence principle and Schr6dinger's 
equation come from? 

6. Why does a physical theory which must give real-valued results 
involve a complex amplitude or state? 

7. Why must a quantum particle exhibit wave behavior (wave-parti- 
cle duality)? 

8. Must quantum mechanics be nonrealistic (a quantum system onlY 
has properties when they are observed)? 

9. Is there a realistic description of quantum mechanics (hidden 
variables model)? 

10. Is there a realistic solution to the EPR problem (can quantum 
mechanics be completed to include all the relevant elements of 
reality)? 

In this overview, we shall attempt to answer these questions and others 
that naturally arise. In doing this, we shall employ a reformulation of the 
mathematical foundations of quantum mechanics and the basic tenets of 
probability theory. This reformulation of quantum mechanics is based on 
the concepts of measurement, generalized action, and a unique universal 
influence function. The main axiom is that the probability of a measure- 
ment outcome is the sum (or integral) of the influences between pairs of 
alternatives that result in that outcome when the measurement is executed. 
Our formulation not only extends the usual quantum formalism, it contains 
more information about a physical system since it is based upon a deeper 
subquantum reality which we shall call a sample space. As in classical 
probability theory, the elements of the sample space represent possible 
alternatives or configurations of the physical system. Measurements per- 
formed on the system are represented by functions on the sample space 
similar to random variables. This already presents an advantage over 
traditional quantum mechanics since it dispenses with self-adjoint operators 
and replaces them with measurement functions that are easier to analyze. 
Although the usual self-adjoint operators can be derived if necessary, the 
measurements functions are more closely related to random variables and 
they provide a natural framework for the study of quantum stochastic 
processes. This formulation is also related to the Feynman formalism and 
gives a rigorous alternative to Feynman path integrals (Feynman, 1949; 
Feynman and Hibbs, 1965). 

2. GENERALIZED ACTION AND UNIVERSAL 
INFLUENCE FUNCTION 

We denote the set of possible configurations of a physical system 5: by 
and call ~ a sample space. If X is a measurement on 50, then executing 
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X results in a unique outcome depending on the configuration co of 5 p. In 
this way, X can be identified with a function X: 92--, R(X), where R(X) is 
the range of X. To be precise, we define a measurement to be a map 
X: El --* R(X) satisfying: 

(M1) R(X) is the base space of  a measure space (R(X), Z~, I~x). 
(M2) For  every x eR(X), X-~(x) is the base space of a measure space 

( x -  ~(x), z~, ~ ~ ). 

We call the elements of  R(X), X-outcomes, and the sets in Zx are X-events. 
Notice that X-~(x)  corresponds to the set of  configurations resulting in the 
outcome x when X is executed. We call the set X-~(x) the X-fiber over x. 
The measures I~x,p~.,x~R(X), represent a priori weights due to our 
knowledge of the system (for example, we may know the energy of the 
system or we might assume the energy has a certain value). In the case of  
total ignorance, these weights are taken to be counting measure in the 
discrete case and uniform measure in the continuous case. 

The measurements correspond to the observables of  traditional quan- 
tum mechanics. Notice that at this stage, we do not have a Hilbert space 
and we do not have self-adjoint operators representing observables. As we 
ghaJl later see, these as well as the other quantum mechanical constructs 
can be derived from deeper fundamental principles. Moreover,  this frame- 
work gives a realistic theory, since a configuration co determines the 
properties of  5 P independent of  any particular measurement. The configu- 
rations can also be viewed as hidden variables since an co ~92 completely 
determines the results of  all measurements simultaneously. In fact, mea- 
surements are quite similar to the dynamical variables of  classical mechan- 
ics and this fact will be exploited in the next section. 

We next assume the existence of a real-valued function S: D s ~ N  
which we call a generalized action for the system 5 ~, where Ds ~-f~ and 
Ds ~ X - l ( x )  ~Z} for every x~R(X).  The function S depends on our model 
of  5 P and also on our state of  knowledge of 5 ~. Moreover,  we assume the 
existence of an influence function G: N ~ [~ and define the influence between 
co, eYeD s relative to S to be 

~s(co, co ') -- N2sG[S(co) - S(co ')] (2.1) 

where Ns > 0 is a normalization constant. It will turn out that G is 
symmetric, so that Fs(co, co') = Fs(co', co). 

We can also define an influence for a superposition of two generalized 
actions. I f  S~, $2 are generalized actions and a, b s N ,  then the influence 
between co, co'~Ds~ c~Ds2 relative to a superposition of  S~ and $2 is 

Fs~.s2(co, co') = a2G[SI (co) - $1 (co')] + b Z G [ S 2 ( c o )  - S2(co')] 

+ 2abG[S, (co) - S2(co')] 
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This can be thought of as the influence relative to $1 plus the influence 
relative to $2 plus a cross influence relative to SI and $2. Notice that if 
S~ --5;2, then this reduces to 

f sl ,S 1 ((-0, (~0/) = (a + b) 2 f  si (CO, CO/) 

which is essentially the same as Fsl. 
Following Hemion (1988, 1990), we now make a fundamental refor- 

mulation of the probability concept. We postulate that the probability 
density Px, s(X) of an X-outcome x is the sum (or integral) of the influences 
between each pair of configurations that result in x upon executing X. In 
precise mathematical form, we postulate that Fs(co, co') is integrable and 

ix fx Fs(~ Px, s(X) = -I(x)c~Ds -l(x)c~D S 

Moreover, to ensure that Px, s(X) is indeed a probability density, we assume 
that Px, s is measurable with respect to Zx and the following normalization 
condition holds: 

fR #x(dx) = 1 (2.3) Px.s(X) 
(x) 

Equation (2.3) can be used to find the normalization constant ]Vs. 
If BeE x is an X-event, we define the (X, S)-probability of B by 

Px.s(B) = fB Px, s(X) #x(dx) (2.4) 

We shall show later that G has a special form which implies the nonnega- 
tivity of Px,s(X). For this reason Px, s is indeed a probability measure on 
~x,  which we call the S-distribution of X, Similar definitions apply to 
superpositions of generalized actions by replacing F s with Fs~,s2 to get the 
probability density Px,sl,s2(X) and the distribution Px, s l.s2(B). 

Influence is a strictly quantum mechanical phenomenon which is not 
present in classical physics. In the classical limit, Fs(co, 09') approaches a 
delta function 6,o(co'). In this limit Fs(co, o9') = 0 for co r co' and there is no 
influence between distinct configurations. We then have 

Px, s(x) = ~ ( x - l ( x ) )  

and this reduces to a classical probability framework. 
We can extend this theory to include expectations of functions on ~. 

Let g : f ~  ~ be a function that is integrable along X-fibers. We define the 
(X, S)-expectation of g at x by 

fx fx g(co)F(co'co')#~d~ Ex's(g)(x) = -l(x) ~ Os -'(x) ~ Ds 
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This equation is the natural generalization of (2.2) from a probability to an 
expectation. If  this last expression is integrable, then the (X, S)-expectation 
of g is given by 

= ~ Ex, s(g)(x) #x(dx) (2.5) Ex.s(g) 
dR (2;) 

We can also use this formalism to compute probabilities of events in 
~. Let A c ~ and denote the characteristic function of A by ;(~. If  ZA is 
integrable along X-fibers, in analogy with classical probability theory, we 
define the (X, S)-pseudoprobability of A by Pxs(A) = Ex, s(gA). It follows 
from (2.3) and (2.5) that Px, s ( ~ ) =  1, and Px.s is countably additive. 
However, fix, s may have negative values, which is why it is called a 
pseudoprobability. Nevertheless, there are ~-algebras of subsets of ~ on 
which Px, s is a probability measure. For example, if A =X-~(B)  for 
B~Z x, then it can be shown that Px, s (A)=Px,  s(B) (Gudder, 1992b). 
Hence, in this case, fix, s reduces to the probability distribution Px, s. A less 
trivial example is given in the next section. 

Until now we have not imposed any conditions on the influence 
function G except measurability. It turns out that, due to fundamental 
physical principles, G can be uniquely specified. The following conditions 
can be physically justified (Gudder, 1991; Hemion, 1988, 1990): 

(1) G is continuous. 
(2) G has a zero. 
(3) G is causal, that is 

G(O~) =- 0 =~ ~ [G(~b + 0,) + G((o - Oi)] = 0 
i = l  i = 1  

for all ~ E~. 

Condition (3) follows from the principle of strong causality, which 
states that the future cannot influence the present. The following theorem 
is due to Hemion (1988, 1990) and Gudder (1991). 

Theorem. If  u: R ~ ~ is causal, continuous, and has a zero, then there 
exists an a > 0 such that u(O) = u(0) cos aO for all 0 ~ .  

We conclude that an influence function G is essentially unique and in 
fact G(O) = G(0) cos aO. This shows that a quantum system automatically 
possesses a periodic behavior and has an intrinsic wavelength. In a sense, 
we have derived the de Broglie wave associated with a quantum particle. By 
a change of scale, we can assume that G ( 0 ) = a  = 1. We then call 
G(O) = cos 0 the un#ersal influence function. 
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We now employ the universal influence function G in our previous 
probability formulas. Equation (2.1) now becomes 

Fs(cO, co') = N 2 cos[S(co) - S(~')] (2.6) 

Substituting (2.6) into (2.2) gives 

P x, s(X) = Ns eis(~ (2.7) 
I ( x )  c~ D s 

We call the function 

fs(co) = { Nseis~) forf~ oa~Dsco~Ds 

the S-amplitude function and define the (X, S)-wave function by 

fx fs(co) #~x(dm) (2.8) fx.s(X) = -'(x) 

From (2.7) and (2.8) we have 

P x, s(X) = Ifx, s(X)[2 (2.9) 

Equation (2.7) shows how the complex numbers arise in quantum 
mechanics. The complex numbers are not needed for the computation of 
Px, s(X) since we can always write Fs(m, co') in the form (2.6). They are 
merely a convenience that gives a simpler and more concise formula. In this 
sense, the complex numbers are convenient but not necessary. We have also 
derived the Feynman amplitude function fs  (co) --Ns eis(~~ (Feynman, 1949; 
Feynman and Hibbs, 1965) from deeper physical principles. Equation (2.8) 
justifies Feynman's prescription that the amplitude of an outcome x is the 
sum (integral) of the amplitudes of the configurations that result in x. 

If BeZx,  applying (2.4) and (2.9) gives the (X, S)-probability of B 

= .fB ]fx's(X)12 #x(dx) (2.10) Px.s(B) 

It follows from (2.3) that fx.s is a unit vector in the Hilbert space 
Hx = L2(R(X), Zx, #x) and this is where the Hilbert space comes from. 
Let us assume that R(X) ~_ ~, which is the usual case for a measurement. 
Introducing the self-adjoint operator )( on Hx defined by .~g(x) = xg(x), 
we find that (2.10) becomes 

Px.s(B) = IIPX(B)fx.s II 2 

where P~ is the spectral measure for J?. Hence, we obtain the self-adjoint 
operator representing the measurement X and have derived the usual 
probabilistic formula for its distribution. 
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A similar analysis applies to a superposition of two generalized 
actions. In this case (2.7) has the form 

F; I P~c.s ~.s ~ (x) = [ae is~ (o~) + be is2 @,)] la ~r (do)) 
- l(x) c~ D s l  c~D3 2 

The (S~, S2)-amplitude function then becomes 

fs,,s2(m) = {;ei&(~ + be is2(~ for eocDs~ mDs~ 
for e)~Dslc~Ds2 

and the (X, S~, &)-wave function is 

fx  fs ,  ,s2(o)) fx,s, ,s2(x) = _ '(~) tt } ( do)) 

The probability density then becomes 

PX,  S I ,S 2 (X)  = Ifx, s, ,s2 (x)t 2 

Continuing the study of our probabilistic formulas, we define the 
(2(, S)-amplitude average at x of a function g: f] ~ N by 

f x  g(co)fs(o)) ~t~v(do)) (2.11) fx, s(g)(x) = _,(~) 

Then, applying (2.5), we obtain 

Ex, s(g) = Re(fx.s(g), fx,  s } (2.12) 

Equation (2.12) sometimes has the form (Tfx, s , fx .s ) ,  where T is a 
self-adjoint operator on H x and hence g can be represented by a self- 
adjoint operator. We shall give examples of this in the next section. Finally, 
for A __c f~, the (X, S)-pseudoprobability becomes 

ff x, s(A) = Re(fx ,  s (XA), fV.S ) (2.13) 

where, by (2.11), 

fx, s(X,~)(x) = fx-~(~>A fs(cO) ~.(do)) (2.14) 

3. TRADITIONAL QUANTUM MECHANICS 

We now show that our formalism contains traditional nonrelativistic 
quantum mechanics. For simplicity, we consider a single spinless one- 
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dimensional particle, although this work easily generalizes to three dimen- 
sions. We take our sample space to be phase space 

f~= R 2 = { (q ,p ) :q ,P~R} 

The two most important measurements are the position and momentum, 
given by Q(q, p)= q, P(q, p)= p, respectively. However, as is frequently 
done in quantum mechanics, we shall investigate the Q-representation of  
the system. Then, instead of considering momentum as a measurement, we 
view P: f~ --* ~ as a function on f~. 

Each Q-fiber, Q- l (q )  = { (q ,p ) :peR} ,  can be identified with ~. Only 
certain measures on Q-fibers and certain generalized actions S: f ~ N  
correspond to traditional quantum mechanical states and these can be 
derived from natural postulates. We assume that #~ is absolutely continu- 
ous relative to Lebesgue measure on R, and that #~ is independent of q. 
This is because sets of Lebesgue measure zero are too small to have any 
effect on the outcomes of position measurements and there is no a priori 
reason to distinguish between Q-fibers. It follows from the R a d o n -  
Nikodym theorem that there exists a nonnegative Lebesgue measurable 
function ~: R ~ R such that 

izqQ(dp) = (2rch)- l/2~(p) dp 

With this measure on Q-fibers and Lebesgue measure on the range R(Q) = 
R, Q is endowed with the structure of  a measure in accordance with (M1) 
and (M2) of Section 2. 

We now define the generalized action S: f~ ~ N by 

qP S(q,p) = -~- + 0(P) (3.1) 

Applying (2.8), we find that the (Q, S)-wave function becomes 

= (2rch)- 1/2 .fr dp fo,s(q) 

Defining qS(p) = ~(p)e i"(p~ and ~p(q) = q~ V(p), where v denotes the inverse 
Fourier transform, we have 

= (2nh) -1/2 f c~(p)eiqp/, dp = O(q) (3.2) fo,s(q) 

It follows from (2.3) and (2.8) that ~ is a unit vector in the usual position 
Hilbert space He = Lz(R, dq). Thus, ~ is the usual wave-function or state. 

Applying (2.11), we obtain that the (Q, S)-amplitude average of P at 
q becomes 
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t" 
fo,s (P)(q) = (2zrh) - 1 Jpc~(p)e"p/~ dp 

f 1/2 4(ple pq/hdp 

= - -  i h  ( q )  

More generally, if n is a positive integer, we obtain 

fo.s(P")(q) = - ih  q) (3.3) 

Moreover, applying (2.12), we obtain 

EQ,s(P") = - ih  ~(q) ~b (q) dq (3.4) 

which is the usual quantum expectation formula. We conclude from (3.3) 
or (3.4) that P" corresponds to the operator ( - i h  d/dq) n. 

Now let V: ~ ~ ~ and define V(Q): f2 ~ ~ by V(Q)(q, p) = V(q). For 
example, we may think of V(Q) as a potential energy function. The 
(Q, S)-amplitude average of  V(Q) becomes 

= (2zch) -1/2 f V(q)c~(p)eiqp/h dp fo,s[V(Q)](q) 

= V(q)~,(q) (3.5) 

and (2.11) gives 

t" 
EQ,s[V(Q)] = j V(q)~(q)~O *(q) dq (3.6) 

We conclude from (3.5) or (3.6) that V(Q) corresponds to the operator 
which multiplies by V(q). This together with our observation concerning 
P", gives a derivation of the Bohr correspondence principle. 

We now consider probability distributions. Applying (2.1) for measur- 
able B _ ,~ = R(Q), we have 

= fB ]r dq PQ,s(B) 

which is the usual distribution of Q. It is more interesting to compute the 
probability of A = P-I(B) for the momentum function P. We have from 
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(2.14) that 

Gudder  

Hence, 

dt P~(P' t)e'qP/h dp = ~q H(q, p)~(p, t)e iqp/h dp 

Applying (3.3) and (3.5) gives 

dt = -~qq 2m 0q 2 

Interchanging the order of differentiation on the left side of this equation 
and integrating with respect to q gives Schr6dinger's equation. 

f ,  
&s(ZA)(q) = (2ufi)- 1/2 Js (~ dp 

= ( z . 4 )  v (q )  

Hence, by (2.13) and the Plancherel formula we obtain 

fiQ,s[P - '(B)] = f (Z,~b) v (q)~h*(q) dq 

= .f(Z.g~)(p)dp *(p) dp 

= _I. I (P)J2 dp 

Again, this is the usual momentum distribution. One can also derive 
Lfider's conditional probability formula and the Heisenberg uncertainty 
relations from this formalism (Gudder, 1988b, 1989). 

Until now we have treated time as fixed. We now briefly consider 
dynamics. Let ~(q, t) be a smooth function. Our previous formulas hold 
with ~(q) replaced by ~(q, t) and #~ replaced by q . /~Q,, We now derive 
SchrSdinger's equation from Hamilton's equation of classical mechanics 
dp/dt = -OH/Oq. Suppose that the energy measurement has the form 

p2 

H(q, p) = ~m + V(q) 

We now assume that Hamilton's equation holds in the amplitude average. 
Applying (2.11), we have 

dtd f - vqS f - pfs(q,p,t)#qo,,(dp)=-~ - H(q,p)fs(q,p,t) q 
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4. SPIN 

We now show that spin can be described within the present frame- 
work. Since spin measurements have only a finite number of values, we 
shall not need the full generality of quantum probability as developed in 
Section 2. We first discuss a simplified version that is broad enough to 
include spin. Let (f~, Z, #) be a measure space which we call a measurable 
sample space. Let X: f]--* ~ be measurable with only a finite number of 
values R ( X ) =  {xj . . . . .  x, } and let vl . . . .  , v, be positive numbers. We 
then call (X; v~ . . . . .  v,,) a simple measurement. For simplicity, we fre- 
quently denote a simple measurement by X. Note that in a natural way, X 
is a special case of a measurement as defined previously. In this case, the 
probability of the outcome x+ when X is executed becomes 

= : 

We first consider the spin 1/2 case. Fix a direction corresponding to 
the z axis and assume that the spin./= in the z direction is known (either 1/2 
or -1/2) .  Let co~[0, n] denote a direction whose angle to the z axis is co. 
By symmetry, the spin distribution should only depend upon co. Define the 
measurable sample space (~1/2, •1/2, ~1/2), where ~I/2-~-[0, ~], ~1/2 is the 
Boret a-algebra on fll/2, and ~q/2 = �89 + 60 + 6~. The measure # is Lebes- 
gue measure and 6 o, 6~ are the Dirac point measures at 0, n, respectively. 
The justification for this measure is that we have total ignorance on (0, n) 
and precise knowledge at 0 and =. 

For 0~[0, n], define the function 01/2:~'~i/2 + {1/2, -1/2} by 

- i  for co~[0, 0] 
0'/2(o0) = for coe(0, ~] 

The function 0~/2 corresponds to a spin 1/2 measurement in the 0 direction. 
Notice that 0'/2 is the simplest nontrivial function depending on 0 that can 
be defined from ~1/2 to {1/2, - 1/2}. In this way, we obtain a collection of 
measurements {0'/2:0~[0, n]} each being applied in a different direction. 
Observe that a sample point co ~f~i/2 determines the spin in every direction 
simultaneously. To make 01/2 a measurement, we must define positive 
weights v~/2, v_~/2 corresponding to the values 1 /2 , -1 /2 .  Pleading total 
ignorance, we let Y l / 2  = V - l / 2  = 1. 

For L = 1/2, we define the generalized action S~/2:(0, n ) ~  by 
SJ/2(co) = co. The S1/2-amplitude function f 1/2 =fs,/2 becomes 

{~ i+ for co~(O,n) 

f'/:(co) = for co~{O, n} 
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The (01/2, S1/2)-wave function is given by 

; 1 e i<~ do9 i eiO) f l o /2  2 = f l / 2  d # l / 2  = "2 = -~ ( 1 + 
01/2) -- 1(1/2 ) 

1 fo ~ i _ eiO) 1/2 f 1" f" f l /2d l . tw2=~ e,,Odo 9 = 5 ( 1  

The probabilities are 

= o1/2 ~ = ~  2 

P - ~  = 4 2 0 '/2.Si/a f10/22 = [1 -- = sin 2 -  

Of course, this is the usual probability distribution for the spin in the 0 

direction when j__ = 1/2. 
For j .  = -1 /2 ,  we define the generalized action S-l/2: [0, re] ~ N by 

{o9 for oge(O, 7t) 
S-1/2(O9) = - n / 2  for og~{0, n} 

The S l/2-amplitude function f - l / 2  =fs - , /2  becomes 

{ 2  f~ o9~(0, ~) 
f -u2(o9)  = for cot{0, ~} 

The (01/2, S-l!2)-wave function is given by 

f o i J ~  2 . :  f -1 /Z  d~l/2= -- ( 1 - - e  i~ 
0 1/2) - 1(1/2 ) 

f i ei0) 1'2//t ) lx'~ = f - 1 / 2 d # l / 2 =  - - ~ ( 1  + f;,/_~ 

We then have 

1 t �9 2 0 Pollzs-,12 ~ = sin 

(0 0 
Po 112s- li2 -- = cos 2 

which is again the usual distribution for spin in the 0 direction when 
j= = - 1/2. 

We next consider the spin-1 case. Roughly speaking, a spin-1 measure- 
ment can be considered as a sum of two spin 1/2 measurements. Equiva- 
lently, a spin-1 particle is viewed as a system composed of two spin 1/2 
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particles. We take the spin-1 measurable sample space (f~l, Z1,/zl) to be the 
Cartesian product 

(~"~1/2 X ~1/2, Zl/2 X Zl/2,  ill/2 X ill/2) 

of two spin-l/2 sample spaces and define 01: f~l ~ {1, 0, - 1} by 01(col, co2) = 
0b'2(co~) + 0~/2(o~2), where 01/2 is the spin-l/2 measurement defined previ- 
ously. On the range R(O 1) = {1, 0, - l }  we define the weights vl = v_1 = 1, 
and vo = 1/2. We place the weight 1/2 on the value 0, since 0 can occur in 
two different ways and this gives each of the values an equivalent weight. 

For./'= = 1, we define the generalized action $1: (0, n) x (0, n) ~ ~ by 

S ~ ( ~ ,  0~) = S1/2(c01) + S~/2(c02) = co~ + ~2 

The S~-amplitude function f~ =fs~ becomes 

fl(o~,, 0~2) =f'/2(co,)f'/2(o)2) 

where f l / 2  was given previously. The (01, S1)-wave function is 

f~(1) - - -  f l  d/~, 
01)-1(1) 

1 "~ f j  1 eiO) 2 = - e i~ do) I e i~ do) 2 = ( 1 + 
4 - 4  

.f~, ( -- 1) = f '  d#l 
01)--1(-- I) 

1 "0 fo  ~ 1 __ eiO) 2 = -  e i~~ do) 1 e/'~2 d~o 2 = (1 
4 - 4  

f~, (0)  = ~ f '  @, 
3( o~)-~(0) 

---- ~ ei~~ da)l e ' ~  dm2 = - ~ ( 1  + # ~  - 

The probabilities become 

1 2 4 0 Po, s , ( 1 ) =  lflo~( ) = c o s  -~ 

Po , ,s ,  ( - -  1) = If~'  ( --  1)l 2 = sin4 ~- 
2 

P0. (0) = ~ ] f ~  2 1 2 Is, ~(0) = ~ s i n  0 

which is the usual distribution. 
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For L = - 1 ,  we define the generalized action S 1[ [0, g] • [0, 7[] "--4 
by 

S- l ( ( .Ol ,  (.02) ~--- S-1/2((_01) + S -  I/2((2)2) 

As before, the S-1-amplitude function f - 1  = f s - I  becomes f 1((01, o)2) = 
f--1/2(O)1) f -  1/2((02). By a calculation similar to the previous one we obtain 

Po ,,s -, (1) = sin 40  

Po' . s - ' (  - 1) = cos 4 0 

1 
Po~s-~(O) = ~  sin 2 0 

which is the usual distribution. 
In the j :  = 0  case, we define the generalized action S~ (0, = ) x  

[0, ~] ---, R by 

S~ (02) = S1/2((01) + S -  1/2((02) 

We now need the normalization constant Nso = x/~ and the S~ 
function fo  = fso becomes 

fo((0,, (O2) ~_ x /~ f , / z ( (0 , ) f  1/2(0)2 ) 

We then obtain 

1 " 2 
Po*so(1) = Po,.so( - 1) = ~ sin 0 

Po'so(O) = cos 2 0 

which is again the usual distribution. 
We can continue this process in the natural way and obtain spin 

measurements of any order. It can be shown that these measurements 
reproduce the usual quantum distributions (Gudder,  1993). 

We now show that this framework gives a realistic solution to the EPR 
problem. In this problem, two spin-l/2 particles are created in the singlet 
state which gives correlated measurement values even at large separation. 
We do this by constructing a model for a combined system of  two spin-1/2 
particles. Let (f~l, 2;1,/~1) be the spin-1 sample space defined previously. 
We now consider this as the sample space describing two spin-l/2 particles. 

l01/2 /7 I 1/2 by For 0~, 02 ~ [0, r~], we define the measurements v j i , ,, 22 

01{2(0)1, 0.)2) ~--- 01/2(0)1) 

0~12((0,, (02) = 01/2((02) 
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where 01/2, 0112 are the spin-l/2 measurements defined previously. Then 01{ 2 
gives a spin-l/2 measurement of particle 1 in the 01 direction and ~,z2t~1/2 gives 
a spin-l/2 measurement of particle 2 in the 02 direction. 

The singlet state is given by the generalized action S: Ds ~ ~ with 
domain 

Ds = ((0, ~) x {0, ,~}) ~({0,  ~} x (0, ~)) 

and defined by 

S(COl,CO2)=J'COl+rC/2 for (Cal,CO2)E(0, g) X{0, rC} 
(.O2--rC/2 for (COl,ah)e{0, rc} x (0 ,  n) 

It is easy to show that, the normalization constant Ns = 1/x/~, the S- 
amplitude function becomes 

fs(CO,, 092) = . ~  If-1/2((.01 )f1/2(0)2) -fl/2(COl )f-'/2(c_oz) ] 

A simple calculation gives the (0~{ 2, S)-wave function 

Hence, 

fol~2,s = I ,2 f sd l t ,  = - - e  i~ 
d(o ~{ ) -~(1/2) x/2 

fo l{2,s 0 l{ 2) -1(_ 1/2) - ~  
eiOj 

1 

This is the usual distribution for the measurement 01~ 2. A similar result 
holds for 01/22. 

To obtain the spin correlations, we define the four sets 

It is natural to define the S-ampfitudes of these sets as 

f s ( A  +- +- ) = ;A • 1 7 7  f s  d]21 

A straightforward computation then gives 

f s ( A  + +) = - f ( A  - - )  = 2-3/Z(ei~ - e i~ 

f s ( A  + - )  = - f ( A  - +) = 2-3/2(e ~~ + e ~~ 
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It  is again natural to define the S-joint probability distributions of 01/21~ and 
1/2 by 
22 

pnl/2zll/2 c,(.j[_L 1) 
~11 ,u22  , o \ -  2 , -t-g = Ifs(A+-+-)la 

W e  t h e n  o b t a i n  

H ,v22 . . . .  ,1 ,v~2 ,o \ 2 '  = 2 sine 2- 

This is the usual quantum joint distribution, which shows that there is 
correlation between the two measurements. 

We have thus constructed a realistic model for the EPR problem that 
gives the same predictions as traditional quantum mechanics. The reason 
this model is not contradicted by Bell's theorem is that Bell's inequalities 
were derived assuming classical probability theory and we have employed 
quantum probability theory (Gudder, 1994). 
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